8p11 myeloproliferative syndrome

8p11 myeloproliferative syndrome is a blood cancer that involves different types of blood cells. Blood cells are divided into several groups (lineages) based on the type of early cell from which they are descended. Two of these lineages are myeloid cells and lymphoid cells. Individuals with 8p11 myeloproliferative syndrome can develop both myeloid cell cancer and lymphoid cell cancer.

The condition can occur at any age. It usually begins as a myeloproliferative disorder, which is characterized by a high number of white blood cells (leukocytes). Most affected individuals also have an excess of myeloid cells known as eosinophils (eosinophilia).

In addition to a myeloproliferative disorder, many people with 8p11 myeloproliferative syndrome develop lymphoma, which is a form of blood cancer that involves lymphoid cells. The cancerous lymphoid cells grow and divide in lymph nodes, forming a tumor that enlarges the lymph nodes. In most cases of 8p11 myeloproliferative syndrome, the cancerous cells are lymphoid cells called T cells. Lymphoma can develop at the same time as the myeloproliferative disorder or later.

In most people with 8p11 myeloproliferative syndrome, the myeloproliferative disorder develops into a fast-growing blood cancer called acute myeloid leukemia.

The rapid myeloid and lymphoid cell production caused by these cancers results in enlargement of the spleen and liver (splenomegaly and hepatomegaly, respectively). Most people with 8p11 myeloproliferative syndrome have symptoms such as fatigue or night sweats. Some affected individuals have no symptoms, and the condition is discovered through routine blood tests.

Frequency

The prevalence of 8p11 myeloproliferative syndrome is unknown. It is thought to be a rare condition.

Genetic Changes

8p11 myeloproliferative syndrome is caused by rearrangements of genetic material (translocations) between two chromosomes. All of the translocations that cause this condition involve the *FGFR1* gene, which is found on the short (p) arm of chromosome 8 at a position described as p11. The translocations lead to fusion of part of the *FGFR1* gene with part of another gene; the most common partner gene is *ZMYM2* on chromosome 13. These genetic changes are found only in cancer cells.

The protein normally produced from the *FGFR1* gene can trigger a cascade of chemical reactions that instruct the cell to undergo certain changes, such as growing

and dividing. This signaling is turned on when the FGFR1 protein interacts with growth factors. In contrast, when the *FGFR1* gene is fused with another gene, FGFR1 signaling is turned on without the need for stimulation by growth factors. The uncontrolled signaling promotes continuous cell growth and division, leading to cancer.

Researchers believe the mutations that cause this condition occur in a very early blood cell called a stem cell that has the ability to mature into either a myeloid cell or a lymphoid cell. For this reason, this condition is sometimes referred to as stem cell leukemia/lymphoma.

Inheritance Pattern

This condition is generally not inherited but arises from a mutation in the body's cells that occurs after conception. This alteration is called a somatic mutation.

Other Names for This Condition

- 8p11 stem cell leukemia/lymphoma syndrome
- 8p11 stem cell syndrome
- myeloid and lymphoid neoplasms with FGFR1 abnormalities
- stem cell leukemia/lymphoma

Diagnosis & Management

Genetic Testing

 Genetic Testing Registry: Chromosome 8p11 myeloproliferative syndrome https://www.ncbi.nlm.nih.gov/gtr/conditions/C3150773/

Other Diagnosis and Management Resources

- Cancer.Net from the American Society of Clinical Oncology: Acute Myeloid Leukemia Diagnosis http://www.cancer.net/cancer-types/leukemia-acute-myeloid-aml/diagnosis
- Cancer.Net from the American Society of Clinical Oncology: Acute Myeloid Leukemia Treatment Options http://www.cancer.net/cancer-types/leukemia-acute-myeloid-aml/treatment-options
- Cancer.Net from the American Society of Clinical Oncology: Non-Hodgkin Lymphoma Diagnosis http://www.cancer.net/cancer-types/lymphoma-non-hodgkin/diagnosis
- Cancer.Net from the American Society of Clinical Oncology: Non-Hodgkin Lymphoma Treatment Options http://www.cancer.net/cancer-types/lymphoma-non-hodgkin/treatment-options

General Information from MedlinePlus

- Diagnostic Tests
 https://medlineplus.gov/diagnostictests.html
- Drug Therapy https://medlineplus.gov/drugtherapy.html
- Genetic Counseling https://medlineplus.gov/geneticcounseling.html
- Palliative Care https://medlineplus.gov/palliativecare.html
- Surgery and Rehabilitation https://medlineplus.gov/surgeryandrehabilitation.html

Additional Information & Resources

MedlinePlus

- Health Topic: Acute Myeloid Leukemia https://medlineplus.gov/acutemyeloidleukemia.html
- Health Topic: Blood Disorders https://medlineplus.gov/blooddisorders.html
- Health Topic: Bone Marrow Diseases https://medlineplus.gov/bonemarrowdiseases.html
- Health Topic: Lymphoma https://medlineplus.gov/lymphoma.html

Additional NIH Resources

 National Cancer Institute: Adult Acute Myeloid Leukemia https://www.cancer.gov/types/leukemia/patient/adult-aml-treatment-pdq

Educational Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology http://atlasgeneticsoncology.org/Anomalies/8p11inMPDID1091.html
- Cedars-Sinai: Leukemia http://www.cedars-sinai.edu/Patients/Health-Conditions/Leukemia.aspx
- Johns Hopkins Medicine: Non-Hodgkin's Lymphoma http://www.hopkinsmedicine.org/kimmel_cancer_center/types_cancer/ non_hodgkin_lymphoma.html
- KidsHealth from Nemours: Leukemia http://kidshealth.org/en/parents/cancer-leukemia.html

- MalaCards: 8p11 myeloproliferative syndrome http://www.malacards.org/card/8p11_myeloproliferative_syndrome
- Orphanet: Myeloid neoplasm associated with FGFR1 rearrangement http://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=168953

Patient Support and Advocacy Resources

- American Cancer Society https://www.cancer.org/
- Leukemia and Lymphoma Society http://www.lls.org/

Scientific Articles on PubMed

PubMed

https://www.ncbi.nlm.nih.gov/pubmed?term=%28Myeloproliferative+Disorders %5BMAJR%5D%29+AND+%28%288p11+myeloproliferative+syndrome%5BTIAB %5D%29+OR+%28stem+cell+leukemia/lymphoma%5BTIAB%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+3600+days %22%5Bdp%5D

OMIM

 CHROMOSOME 8p11 MYELOPROLIFERATIVE SYNDROME http://omim.org/entry/613523

Sources for This Summary

- Goradia A, Bayerl M, Cornfield D. The 8p11 myeloproliferative syndrome: review of literature and an illustrative case report. Int J Clin Exp Pathol. 2008 Jan 1;1(5):448-56.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18787627
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2480578/
- Jackson CC, Medeiros LJ, Miranda RN. 8p11 myeloproliferative syndrome: a review. Hum Pathol. 2010 Apr;41(4):461-76. doi: 10.1016/j.humpath.2009.11.003. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20226962
- Xiao S, Nalabolu SR, Aster JC, Ma J, Abruzzo L, Jaffe ES, Stone R, Weissman SM, Hudson TJ, Fletcher JA. FGFR1 is fused with a novel zinc-finger gene, ZNF198, in the t(8;13) leukaemia/lymphoma syndrome. Nat Genet. 1998 Jan;18(1):84-7.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9425908

Reprinted from Genetics Home Reference:

https://ghr.nlm.nih.gov/condition/8p11-myeloproliferative-syndrome

Reviewed: July 2013

Published: March 21, 2017

Lister Hill National Center for Biomedical Communications U.S. National Library of Medicine National Institutes of Health Department of Health & Human Services